

AEROGEL CHERENKOV COUNTER

PHENIX Focus Satoshi Takagi For the High-p_T Upgrade Team

Contents

- **Concept**
- What is PHENIX Aerogel Cherenkov Counter?
- ➤ Mechanical design & Electronics
- > Simulation Activity
- Performance of single cell
- Results & Future Plan
- Summary

Currently, PID is ...

Physics Motivations

- From basic strategy, it is natural extension for PHENIX to extend its PID in higher pt region.
- ✓ Strong motivation given;
 - Jet Quenching !?
 - Large suppression of pions at high-pT, while protons show binary scaling!?
 - Meson/baryon puzzle?
 - Need to extend PID >5GeV/c !!

Concept

- > PID in high p_T region
 - Cherenkov Radiation
- > Cherenkov Radiator
 - Low refractive index
 - Best index with RICH(CO₂) is $n \sim 1.01$.

Requirements

- Refractive index: n~1.01
- Light yield: >10 p.e.
- Uniformity of the light yield: Needed.
- Occupancy in Au+Au collisions : <10% S/N

- Momentum threshold
- Resolving power
- Easy handling

Installation Purpose

To enhance the PID capability of PHENIX!!

TOF RICH Aerogel (+ TOF or RICH)

Aerogel: (n=1.011)

TOF: 100 ps time resolution

RICH: CO_2 , (n = 1.00041)

What is Aerogel Counter??

(I) Outline

- Cherenkov Counter (non-ring-imaging type)
 - Cherenkov radiator is Silica Aerogel. (MATSUSHITA, SP-12M)
 - Photon is detected by 2 PMTs. (HAMAMATSU, R6233)
 - All inner surface is covered with DRP Reflector. (Goretex)
 - Integration cube for uniformity of light yield. (Air)

What is Aerogel Counter??

(II) Aerogel Panel

✓ Direction of each other cell is reversed
- Aerogel locates at the same distance from vertex.

What is Aerogel Counter??

PHENIX Focus ~ Aerogel Cherenkov Counter ~ Satoshi Takagi

angle

(I) Silica Aerogel

Characteristic

- Refractive index ~ 1.0114 +/- 0.0008
 - Silica aerogel with lowest refractive index commercially available !!
- Density ~ 40 mg/cm³
- Transparent for 10mm thickness
 - 64% @ 400nm, 88% @ 550nm
- Hydrophobic
- Long term stability (KEK-Belle)
- Very fragile

Many many

Aerogel

tiles!!

Y.Miake

He is godfather of aerogel!!

PHENIX Focus ~ Aerogel Cherenkov Counter ~ Satoshi Takagi

PMT R6233-01HA (HAMAMATSU)

(II)PMT

PMT R6233-01HA (HAMAMATSU)

- 3-inch diameter *large !!*
- Gain : >10^7 at -1500V *high gain !!*
- Q.E.: 30 % high Q.E.!!
- Dark Current : 2nA low noise !!

(III) HV Divider for PMT

- High Gain compared with HAMAMATSU standard
 - Voltage distribution ratio was modified from standard.
- Low Power consumption
 - We do not need cooling.
- > Hand made
 - For Thinner material & less space

(IV) Mu-metal Shield

- ➤ Magnetic field (W1 sector)
 - B-field at the place where the aerogel counters is installed: 2~8 Gauss
- ➤ Mu-metal Shield
 - Thickness & Size of the mu-metal shield has been optimized.
 - 0.5mm thick, 80mm long is

enough!!

(V) Reflector Selection

Reflector	Np.e.	Attenuation Length [cm]				
Goretex	11.78	6.5±0.3				
Lumirror	10.2	6.9±0.4				
Tetratex	9.8	6.3±0.4				
Tyvek (Double)	9.1	5.8±0.2				
Aluminized Mylar	5.3	4.4±0.2				
BlackPaper	2.0	2.6±0.1				

Goretex is the best!!

(VI) Reflector Property

5000x SEM of DRP®Reflector

Thickness	0.5 mm						
Thermal conductivity	0.04 W/m/K						
Water resistance	Highly hydrophobic						
UV Exposure	UV-resistant						
Dimensional shrinkage	< 1%						
Durability	Inert, stable						
Reflectance	> 98%						

- A 3.0 mm DRP® Reflector
- B 0.5 mm DRP® Reflector
- C 0.25 mm DRP® Reflector
- D Granular PTFE
- E Barium Sulfate
- F Microporous Polyester
- G Powder Coating

Mechanical Design (VII) Padiation Length

(VII) Radiation Length

- ✓ Overall radiation length is about 19.2%!!
 - It is similar to TOF. (TOF ~ 18.7%)

(VIII) Aluminum Box

Box Production @ Dubna

Fabricated Box

- ✓ Aluminum Boxes were made in Dubna!!!
 - Thickness of Lid: 0.8 mm
 - Thickness of other parts: 0.5 mm

Assembled Counter

PHENIX Focus ~ Aerogel Cherenkov Counter ~ Satoshi Takagi

Electronics

PHENIX

(I) Front End Electronics

- ✓ ACC-FEE is the same as the RICH one, except for the trigger module.
 - 1 controller board, 5 AMU/ADC board 1 readout board
- ✓ Read out signal from 160 PMTs
 - 0 to 50 p.e. detection with 10 bit
- ✓ AMU/ADC module
 - 64 channels for Analog to Digital Converter.
 - Charge and Timing information is digitized on AMU/ADC module.

Electronics (II) Preamplifier

Preamplifier Gain

- PMT signal : 0.8 pC/p.e.
- FEE dynamic range: 0 to 160 pC

To measure the photo-electrons at the range from 0 to 50 p.e. (0 to 40 pC)

Required Preamp's net gain: x 4

Performance

• The measured gain is 4.3. (design value is 4.5.)

Performance of Single Cell

Test Beam (KEK-PS)

(I) Clean Signal

- ✓ Very clean separation !!
- ✓ Amount of photons other than Areogel Cherenkov is small !!

Performance of Single Cell

✓ Uniform response, thanks to Integration Volume

X Position[cm]

- Important to separate in the momentum region of slow rise
- ✓ ~10% diff. between normal/reverse, due to diffusive nature of aerogel

X Position[cm]

Simulation Activity (I) Optical Simulation

	20	vs	Be	am	Pos	itio	<u>1</u>]		:				- A	CC1	l (Si		on) ation) ation)	
Number of Photoelection	18	Ē											¥ *	sı A	um (CC1	Exp (Ex	erim operi	ent) ment ment)
3	16	<u> </u>		.	<u>.</u>	¥	ļ		<u>I</u>	Ţ			тт		т		Ţ	- i v	, , ,
É	14	<u></u>	1 1	. I	I	<u>.</u>	İ	I I	I		İ	<u>†</u>	Ţ <u>Ť</u>	Ţ	Ĭ	<u>.Ť</u> .		İ.	
5	12	<u> </u>									Ť								
	10	Ē					<u>.</u>								<u>.</u>		<u>I</u>	<u> </u>	<u>‡</u> .
	8	<u> </u>	! .	Į.	Ť.		•		<u>I</u>				±	I	Î	Ī		I	
	6	∓	¥.	Ī	Ĭ.	ĮĮ	Ī	1	-	-	<u> </u>		•	Ļ	_				
	4	<u> </u>					ļ												
	2	<u> </u>																	
	0	Ē.	-10				-5			0	-			5 Be	am	Po	siti	10 lon	 [cm]

	Sim.	Exp.				
Np.e.	~ 14 p.e	~ 15p.e.				
Propagation	~ 7 ns	~ 7 ns				
Time diff	~ 4ns	~ 2 ns				
Time diff.	(max)	(max)				

Photon Propagation

Simulation Activity (II) Aerogel Cherenkov Counter in PISA

Online Monitoring

(I) Information of the Summed PMTs

Charge distribution

- Convert ADC to number of p.e.
- The sum of p.e. in all PMTs. (160 PMTs).

Time distribution

• The time distribution of ACC in all PMTs(160 PMTs)

Online monitoring

(II) Information of each PMT

Calibration Method

- > Conversion Parameter
 - Conv. para.from ADC to p.e.
 - Our PMT has one p.e. resolution. (see right figure)
 - Fit the 1 p.e. peak by gaussian.

We calibrate ACC by using physics data.

Pedestal Stability

 We took pedestal run once on a day.

> We check pedestal stability by using daily pedestal run.

Zero-Suppressed data

Results @ Run4 Au+Au

(I) Raw data

- we can see the coincidence data clearly.
- Aerogel Counter works well!!

Results @ Run4 Au+Au (II) Occupancy

- Simulation
 - calculated by PISA
 - HIJING Au+Au 200 GeV
- > Experiment
 - Run4 Au+Au 200 GeV

Simulation result is consistent with experimental result!!

PHENIX

Results @ Run4 Au+Au (III) Tracking association

- Clear pion rise up to $\sim 2 \text{GeV/c}$. (K, p not seen.)
- Peak position of Npe saturates at high momentum region.

Physics Results (future plan)

- Single particle p_T spectra
- ightharpoonupCentral-to-Peripheral ratio(R_{cp}) vs p_T
- Elliptic Flow
- > etc...

In near future, the analysis results will be presented

Summary

- ✓ Half the detector has been installed in Run4.
 - remaining half detector will be installed by Run5.
 - New Time-of-Flight will be installed behind the Aerogel.
- ✓ The PHENIX Aerogel-Cherenkov-Counter is capable to extend the PID region of PHENIX.
 - pion identification : ~ 3.7GeV/c, 5.5GeV/c ~ 10GeV/c
 - kaon identification : ~ 3.7GeV/c, 5.5GeV/c ~ 7GeV/c
 - proton identification : ~ 7GeV/c
- ✓ In near future, the physics results will be presented.
 - example
 - Inclusive particle p_T spectra
 - Central-to-Peripheral ratio (R_{cp}) vs. p_T
 - Elliptic Flow
 - etc

Institutions

- ✓ BNL
- ✓ JINR-LHE (Dubna)
- ✓ CNS, University of Tokyo
- ✓ Tsukuba College of Technology
- ✓ University of Tsukuba

And, of course, much more people are related to the past/coming successful construction/operation of it.

Lots of persons for the essential works in the past, and much more persons in the future.